Skip to Main Content

Heads of Laboratories

Head shot of Alipasha Vaziri
Alipasha Vaziri, Ph.D.
Associate Professor
Laboratory of Neurotechnology and Biophysics
Alipasha.Vaziri@rockefeller.edu

Brain functions rely on the coordinated dynamics of a vast number of highly interconnected neurons. To discern how these dynamics lead to behavior, Vaziri seeks to capture neuronal activity over large brain volumes at high speed and single-cell resolution across species. His lab develops and uses imaging techniques addressing these demands to generate functional maps of neuronal circuits up to the level of a whole brain in behaving animals.

To fully understand how sensory input leads to behavior, it is necessary to not only map connections between neurons, but also examine how these cells interact in real time and how their collective dynamics influence behavior. To do so, new tools are required to excite neurons in specific spatiotemporal patterns, while capturing their activity across entire functional networks on a physiologically relevant timescale and at single-cell resolution.

Vaziri develops new high-speed functional optical techniques that meet this challenge. With these tools, he seeks to uncover the biological mechanisms and ultimately the computational and theoretical principles by which sensory inputs are represented and interact with internal states to generate behavior.

One of these tools, light sculpting, uses temporal focusing to disperse the spectrum of femtosecond laser pulses, which are then brought back into register, generating a wide-field two-photon excitation that is axially highly confined. Three-dimensional data can be obtained by scanning the wide-field two-photon in the axial direction. Using genetically encodable calcium sensors, the lab has developed a microscope that can capture brain-wide dynamics in C. elegans at high speed.

Applying a variation of this approach to neurons engineered to express light-sensitive channel rhodopsin, Vaziri and his colleagues have also shown that individual cells can be selectively activated at high speed. Variations on this technique have made it possible to mimic the excitation patterns target neurons would receive from the environment.

Another technique developed by Vaziri and his collaborators makes it possible to record signals on even greater scales and at higher speeds than has been possible previously. Light-field deconvolution microscopy employs an array of microlenses to simultaneously capture views from a large number of angles, without any moving components. These views are then recombined to generate a three-dimensional representation. This technique has made it possible to capture the activity of thousands of neurons across the entire brain of the larval zebrafish, which the lab uses as a model to understand the emergence of high-level feature recognition and action selection.

The Vaziri lab continues to refine these and other techniques, and extend their use across species. One of the main frontiers in the field is the creation of tools to capture the functional dynamics of large-scale neuronal circuits in awake, behaving rodents. Working toward this goal Vaziri’s lab has recently demonstrated an unbiased high-speed calcium imaging technique based on light sculpting that has made it possible to capture the majority of a mouse cortical column at single-cell resolution.  

Ultimately, Vaziri hopes to examine the computation algorithms with which the brain performs various tasks. In addition, his lab is broadly involved in using other optical tools, such as single-molecule techniques, and exploring new ways of applying quantum optics to other biological questions.


EDUCATION

M.Sc. in physics, 2000
Ph.D. in physics, 2003
University of Vienna

POSTDOC

National Institute of Standards and Technology and University of Maryland, 2003–2005

POSITIONS

Associate, 2005–2007
McKinsey & Company 

Research Specialist, 2007–2011
Howard Hughes Medical Institute

Assistant Professor, 2011–2014
Director, Quantum Phenomena and Nanoscale Biological Systems Interdepartmental Research Platform, 2012–2015
Associate Professor, 2014–2015
University of Vienna

Group Leader, 2011–2015
Research Institute for Molecular Pathology 

Associate Professor, 2015–
Associate Director, Kavli Neural Systems Institute, 2016–
The Rockefeller University

AWARDS

WWTF Vienna Research Groups for Young Investigators Award, 2010

Human Frontier Science Program Young Investigators' Award, 2012

Prize of the City of Vienna, 2014 

SELECTED PUBLICATIONS

Prevedel, R. et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nat. Methods 13, 1021–1028 (2016).

Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014).

Schrödel, T. et al. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).

Losonczy, A. et al. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 13, 967–972 (2010).

Andrasfalvy, B.K. et al. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl. Acad. Sci. U.S.A. 107, 11981–11986 (2010).


Dr. Vaziri is a faculty member in the David Rockefeller Graduate Program and the Tri-Institutional M.D.-Ph.D. Program