Skip to Main Content

Heads of Laboratories

Head shot of Elaine Fuchs
Elaine Fuchs, Ph.D.
Investigator, Howard Hughes Medical Institute
Rebecca C. Lancefield Professor
Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development

The largest reservoirs of adult stem cells reside in skin. Throughout life, they renew the body’s protective barrier, regenerate hair in cyclical bouts and repair surface wounds. Fuchs studies where stem cells come from and how they make and repair tissues. She explores how stem cells communicate with immune, dermal, and other cells in their environment, and how communication malfunctions in aging and cancers, with an aim to advance therapeutics.

Fuchs’ lab couples in vitro studies with classical genetics, RNAi, and CRISPR-Cas technologies in mice to study the biology of skin stem cells. Her research employs high throughput genomics, single cell sequencing, live imaging, cell biology and functional approaches to unravel the pathways that balance stem cell maintenance and differentiation and to explore aberrant routes in aging and cancers. Her team investigates how stem cells establish unique chromatin landscapes and programs of gene expression, and how this shifts in response to changes in their local environment. They seek to discover the activating signals from neighboring cells that instruct skin stem cells when to make hair and when to repair epidermal injuries. Conversely, inhibitory cross talk tells the stem cells when to stop making tissue and rest. Their findings are accelerating the development of therapeutics to enhance wound repair.

After elucidating the positive and negative signaling pathways that need to be turned on and off at the right time and place for adult skin stem cells to become activated to regenerate tissue, Fuchs’ group focused on what happens when these signals are deregulated. They learned that cancer cells hijack the basic mechanisms that enable stem cells to replenish dying cells and to repair wounds.

A major focus of the lab is on squamous cell carcinomas, among the most common and life threatening of human cancers worldwide. The group first used high throughput genomics to delineate the features of so-called cancer stem cells. They then devised technology that permits high-throughput functional screens for oncogenes, tumor suppressors, and microRNAs in mice. By identifying mutations that selectively fuel cancer growth and showing that these alterations also occur in related human cancers, Fuchs hopes her research will lead to new therapeutics that target cancer stem cells without affecting tissue stem cells.

By studying early steps in malignancy, the group discovered that invading blood vessels and associated inflammatory cells transmit aberrant signals. Nearby tumor-initiating cells respond by reducing proliferation, invading stroma, and resisting chemotherapy. Further away, tumor stem cells grow faster but are more sensitive to drugs. This leads to differences in stem cell behavior within developing tumors that arises from heterogeneity in the microenvironment rather than from variations in genetic mutations.

How do these stromal aberrations affect the transcriptional, epigenetic, and translational programs of stem cells during tumor progression? How do these changes confer drug resistance, and how do they affect epithelial polarity, adhesion, and invasiveness within the tumor? Does the epigenetic and translational heterogeneity in tumor stem cells that arises from local variations in the stroma contribute to subsequent genetic heterogeneity within cancers? What is the importance of immune cell cross talk with stem cells in wound repair versus cancer? As the group answers these questions, they will continue to uncover new links to understanding the process of wound repair, as well as tumor progression and metastasis.


B.S. in chemistry, 1972
University of Illinois, Champaign-Urbana

Ph.D. in biochemistry, 1977
Princeton University


Massachusetts Institute of Technology, 1977–1980


Assistant Professor, 1980–1985
Associate Professor, 1985–1988
Professor, 1989–2002
University of Chicago

Professor, 2002–
The Rockefeller University

Associate Investigator, 1988–1993
Investigator, 1993–
Howard Hughes Medical Institute


White House Outstanding Scientist, 1985

Women in Cell Biology Senior Career Achievement Award, 1997

Cartwright Award, Columbia University, 2002

Novartis/Drew Award, 2003

Dickson Prize, 2004

Federation of American Societies for Experimental Biology Award for Scientific Excellence, 2006

Bering Award, 2006

National Medal of Science, 2008

Charlotte Friend Award, 2010

L’Oréal-UNESCO Award, 2010

Madison Medal, 2011

Passano Award, 2011

Albany Medical Center Prize, 2011

March of Dimes Prize, 2012

Lifetime Achievement Award, American Skin Association, 2013

Kligman-Frost Leadership Award, 2013

Pasarow Award, 2013

Pezcoller Foundation-AACR International Award, 2014

E.B. Wilson Medal, 2015

Vanderbilt Prize in Biomedical Science, 2016

Howard Taylor Ricketts Award, 2017

McEwen Award for Innovation, 2017


National Academy of Sciences
National Academy of Medicine
American Academy of Arts and Sciences
American Philosophical Society
Fellow, American Association for the Advancement of Science
Associate Member, European Molecular Biology Organization


Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650 (2017).

Yang, H. et al. Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169, 483–496 (2017).

Asare, A. et al. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 355, eaah4701 (2017).

Sendoel, A. et al. Translation from unconventional 5′ start sites drives tumor initiation. Nature 541, 494–499 (2017).

Keyes, B.E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338 (2016).

Dr. Fuchs is a faculty member in the David Rockefeller Graduate Program and the Tri-Institutional M.D.-Ph.D. Program.