Skip to Main Content

Heads of Laboratories

Head shot of Vanessa Ruta
Vanessa Ruta, Ph.D.
Gabrielle H. Reem and Herbert J. Kayden Assistant Professor
Laboratory of Neurophysiology and Behavior
vanessa.ruta@rockefeller.edu

Animal behavior reflects the interplay of two types of responses: those that arise innately, from neural circuits pre-programmed into the genome, and those acquired by learning from past experience. Using the fruit fly Drosophila melanogaster, Ruta works to define the neural circuit mechanisms that generate innate and learned behaviors.

Animal behavior arises from an interplay between instinct and learning. Certain behaviors are innate and invariant across members of a species, suggesting they are genetically programmed into the nervous system. However, behavior must also be highly flexible to allow individuals to adapt to their unique and changing experience of the world. A major focus of the Ruta lab is to delineate the distinct neural circuits and computations that underlie innate and learned behaviors, and to reveal how these circuits can be modified through evolution or individual experience to generate novel behavioral adaptations. To accomplish this, the group uses a multidisciplinary toolkit—including optical tracing techniques, electrophysiology, functional imaging, and behavior—to study the concise chemosensory circuits of the fly, with the goal of revealing how they mediate fixed and flexible behaviors at the level of synapses, cells, and circuit motifs.

In recent work, the Ruta lab has examined how the nervous system is wired to flexibly encode and assign meaning to the complex and vast chemical world. By examining the functional architecture of the Drosophila mushroom body, an associative brain center in the fly that is essential for olfactory learning and memory, they shed light on the synaptic and circuit mechanisms that mediate flexible odor processing, demonstrating how neuromodulation can act to rapidly reconfigure circuit properties and allow the same odor to drive alternative behavioral responses. In parallel, the Ruta lab has used Drosophila courtship as a paradigm to explore how innate behaviors emerge from genetically specified neural circuits and are modified through evolution to generate species-specific variations in mating behavior.

All olfactory behaviors in the fly, whether innate or learned, are initiated through the same molecular recognition events: the binding of volatile chemical cues to odorant receptors expressed in peripheral sensory neurons. Odorant receptors in insects, unlike in mammals, are thought to function as heteromeric odor-gated ion channels. To begin to reveal how the binding of odorant ligands is coupled to ion flux in this large and diverse family of membrane proteins, the Ruta lab is performing biochemical, electrophysiological, and structural studies on insect odorant receptors. The aim is to provide insight into the molecular basis for odorant signaling in insects and to lay the foundation for the development of novel strategies to prevent the transmission of insect-borne diseases.


EDUCATION

B.A. in chemistry, 2000
Hunter College of the City University of New York

Ph.D., 2005
The Rockefeller University

POSTDOC

Columbia University, 2005–2010

POSITIONS

Associate Research Scientist, 2010–2011
Columbia University

Assistant Professor, 2011–
The Rockefeller University

AWARDS

New York Stem Cell Foundation–Robertson Neuroscience Investigator, 2012

Pew Biomedical Scholar, 2012

McKnight Scholar, 2012

Sinsheimer Fund Scholar, 2012

Irma T. Hirschl/Monique Weill-Caulier Trust Research Award, 2013

Alfred P. Sloan Research Fellowship, 2013

National Institutes of Health Director’s New Innovator Award, 2013

SELECTED PUBLICATIONS

Cohn, R. et al. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163, 1742–1755 (2015).

Clowney, E.J. et al. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 87, 1036–1049 (2015).

Caron, S.J. et al. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497, 113–117 (2013).

Ruta, V. et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010).

Datta, S.R. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008).

 


Dr. Ruta is a faculty member in the David Rockefeller Graduate Program, the Tri-Institutional M.D.-Ph.D. Program, and the Tri-Institutional Ph.D. Program in Chemical Biology.