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1 Introduction

In our last session, we emphasized that if you are analyzing data that are fractions or
percentages, you should transform the collected data into logit space before analyzing.
While this is correct, it turns out that you probably won’t be doing this as often as you
might think. This is because most of the time, when you measure fractions or percentages,
like the fraction of mice with a particular knockout that die after one week, the raw data
that you collect are not the fractions, but the raw counts; e.g., of alive and dead mice.

When you turn these two observations into a single fraction, you’re throwing away some
information. Your intuition should tell you that throwing away information is generally
a bad idea, and that we can get more out of our data if we keep it all. Moreover, as
we’ve started to see how important large n is to getting narrow confidence intervals and
statistically significant results, the realization that you’re throwing away information about
n when you compute the fraction of mice that survived exposure should really give you
pause.

Statistically speaking, we can say. . .

17

23
̸= 170

230

. . . because the second proportion is associated with a much higher n, and thus should give
us more statistical power to draw inferences.
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2 Bernoulli Trials and the Binomial Distribution

Many studies measure a proportion of subjects that produce a yes/no outcome. Statisti-
cians would say that each individual outcome is the result of a Bernoulli trial.

The canonical example of a Bernoulli is a coin flip. In this case, assuming that the coin
is fair, the two possible outcomes (heads or tails) are considered equally likely, and we’d
say that the true probability of getting heads is 0.50. Just like when we’re measuring
the means of heights of people, when we investigate a coin by repeatedly flipping it and
observing how many heads and tails result, we will never exactly know the true probability
of obtaining heads. Similarly, since coins are not precision machined and balanced, we
should recognize that practically no coin will have a true probability of obtaining heads of
exacly 0.5; with enough flips (perhaps millions or billions), we could detect and quantify
an underlying bias. But if it is small enough, it probably wouldn’t be of interest. This
would be akin to detecting a statistically, but not biologically, significant difference in your
work.

Statisticians tend to label one of the outcomes of a Bernoulli trial as ‘success’, and the
other as ‘failure.’ We should recognize that this distinction is often arbitrary. But it is
important that one is clear which outcome is which; in most cases ‘death’ would be equated
with ‘failure,’ but if you’re trying to drive cancer cells to undergo apoptosis, ‘death’ might
be more naturally labeled as ‘success.’

Although the canonical Bernoulli trial is a coin flip, don’t lose sight of the fact that the
probability of the ‘successful’ outcome of an arbitrary Bernoulli process is not necessarily
0.5. For example, if you’re mating a pair of heterozygous mice for offspring that you
hope will express a recessive trait that follows pure Mendelian inheritance patterns, the
probability of expressing the trait (which we might label as ‘success’) is 0.25.

We normally are not interested in a single Bernoulli trial, but rather in how many successes
(or failures) we observe from a fixed number of trials. The results of these meta-experiments
follow what is known as a Binomial distribution. You can work out simple cases of binomial
distributions in your head. For example, if your meta-experiment is to flip two coins (or
the same coin twice), and count the number of heads you observe, you’d expect there to
be a 25% chance that you get no heads (an outcome of 0), a 50% chance that you get 1
head, and a 25% chance that you get 2 heads.

Similarly, if you breed three offspring from your heterozygous mating pair, you can predict
that there is a (0.75)3 = 42.2% chance that none of your mice would express the recessive
phenotype. With a little more work, you could work out and plot the probabilities of the
four possible outcomes from this meta-experiment, as shown on the left:
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These are two plots of different binomial distributions where n = 3. The left plot shows
the probability of getting a certain number of mice with the recessive phenotype; the right
shows the probability of getting a certain number of heads in three flips of a fair coin. On
the left, p = 0.25, while on the right p = 0.5. We follow the (somewhat confusing) standard
nomenclature here for the binomial distribution. Don’t confound the p here (which is the
probability of success of the underlying Bernoulli process), with a p-value.

3 Confidence Interval of a Proportion

While understanding binomial distributions is helpful in predicting how many successes we
might expect to observe in a meta-experiment that can be thought of a battery of Bernoulli
trials, we often need to work this backwards. We have observed a certain number, x, of
successes out of n trials, and we wish to estimate the true probability of success, p, of the
underlying Bernoulli process. For example, we may observe that 17 out of 23 KO mice
animals die within one week. We would state that 17/23 = 74% of the animals die, and
this would be our best guess of the true value of p. Of course, we wish to compute a CI
for this result.

In Prism, you can do this by creating a simple, two-line “Parts of Whole” table, and then
analyzing it with a “Fraction of Total” analysis. Although Prism now recommends that
the “Wilson/Brown” methods be used, the results presented throughout these notes are
based on the more commonly used “Clopper/Pearson” option. According to this, the 95%
CI for the true probability of success is 52% to 90%.

Just as with t-tests and the normal distribution, we expect that a 99% CI would be wider,
and in fact for this example it is 45% to 93%. Similarly, the 80% CI is narrower: 59% to
86%.

At the same confidence level, CIs become narrower as more data is collected. For example,
if we observed the same proportion of mice dying, but with ten times larger n (i.e., if 170
out of 230 mice died), our 95% CI becomes 68% to 79%.
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CIs from proportional data are not symmetric, and are wider when near p = 0.5.

Unlike with logit transformed fractions, computing CIs of proportions of count data works
just fine even when the number of success is zero. Try computing the 95% CI for the true
probability of success for 23 attempts with no success.

In addition to computing CIs for outcomes of binomial processes, you can also compare the
data to a hypothesized underlying probability of success. In Prism, this is done with the
“Compare observed distribution with expected” analysis. When using this, you probably
want to enter the expected values as percentages. The percentages you enter constitute
the null hypothesis, and Prism will compute a p-value that tells you the probability of
getting the data that you observed (or something more extreme) given your hypothesized
underlying probability of success. As usual, if the p-value is low, you reject the null
hypothesis. If it is higher than your pre-selected cutoff, you admit that the hypothesized
value of p is plausible given the data you collected. This does not, though, “prove” that
the hypothesized value of p is correct! Make sure you internalize this point!

As an example, you should be able to show that, at a 95% confidence level, you’d conclude
that a coin that yielded 17 heads out of 23 coin flips is not fair, and a coin that yielded 16
heads out of 23 flips is plausibly fair.

4 Contingency Tables and Fisher’s Exact Test

The binomial test just described is nice and easy, but our hypothetical experiment is poorly
designed. To say that 74% of our knockout animals died within a week is not informative
unless we also have a control group (maybe there is something very wrong with the food
we’ve given all of our animals). If we did the experiment with controls, we would be in a
position to formulate a contingency table:

Outcome X Outcome Y Total
Group I: Experimental 17 (A) 6 (B) 23

Group II: Control 3 (C) 22 (D) 25
Total: 20 28 48

The relative probability of outcome X with respect to Y is:

PI

PII
=

A
A+B
C

C+D

=
17
23
3
25

= 6.16 (1)

In the epidemiological literature, this ratio of proportions is known as the relative risk; this
language implies that outcome X is worse than outcome Y.
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In this case, just by looking at the data it is pretty clear that there is a significant difference
in one-week survival due to the knockout. We would like to quantify what that difference
is.

Unfortunately, although relative probability is easy to understand, results such as these are
often expressed in terms of odds, not probabilities. You may recall that odds are defined
as:

odds =
p

1− p
(2)

That is, the ‘odds’ is defined as the ratio of the probability of an event happening to the
probability of it not happening. If p = 0.75, the odds are 3:1, or just 3. Whereas 0 ≤ p ≤ 1,
the range of odds is much larger: 0 ≤ odds < ∞. For rare events, the odds is approximately
equal to the probability.

Just as we computed a relative probability, we can compute the relative odds, or, as the
literature calls it, the odds ratio: (

Odds
Ratio

)
=

A/B

C/D
(3)

You can enter contingency data like this into Prism using the “Contingency” option. Prism
can then compute the odds ratio of success, and its CI, by choosing the “Chi-square (and
Fisher’s exact) test” from the “Contingency table analyses” section. For the data in this
example, the odds ratio is 20.78, and the 95% CI is 4.78 - 77.5. As this CI does not include
1, which is the odds ratio that would correspond to no difference between the two groups,
we can conclude that there is a statistically significant difference between the control and
experimental group. Also note that the confidence interval is not symmetric.

When the values in a contingency table are very large, Fisher’s exact test can be com-
putationally intensive to compute. The Chi-square test is an alternative that uses some
approximations that break down when your table has small entries. On a modern com-
puter, you can usually just use the Fisher test. If you are performing many, many tests,
you may want to look into alternatives (there are other issues in multiple hypothesis testing
that we will touch on in another session).

Consider another contingency table:

Outcome X Outcome Y Total
Group I: Experimental 4 (A) 246 (B) 250

Group II: Control 1 (C) 249 (D) 250
Total: 5 495 500
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In this case, the experimental group seems to be roughly four times more likely to have
outcome X. However, a Fisher test shows that there may be no difference at all between the
groups; it is not unreasonable that the variation we observed is due to random sampling,
as the 95% CI of the odds ratio is 0.67 - 50.

At this point, you may be wondering why we have elected to work with odds ratios instead
of the more natural relative proportions. Thus far, all of our hypothetical examples have
been of what are termed ‘experimental studies’. In these studies, we define two groups,
and then perform two different actions on the members of those groups. The outcomes
are results of a Bernoulli trial. For experimental studies, there really is no good reason to
introduce and work with odds instead of probabilities. The reason why this is done will
become apparent in a little while; be patient.

Another kind of study, called a prospective study, is similar. In this kind of study, we define
two groups, as before. However, the two groups are defined by some pre-existing difference.
In an epidemiological study, this may be some prior exposure to a hypothesized risk factor
for a disease. For example, if you hypothesize that people working in the meat-packing
industry are at higher risk for contracting vCJD, one group would consist of those that
work in the meat-packing industry, and the second would consist of subjects who do not.
In this kind of study, once the subjects are selected and assigned to their groups, you let
nature run its course, and, at the end of the study, observe how many subjects in each
group present ‘successful’ or ‘unsuccessful’ outcomes.

The mathematics of the analysis of a prospective study is similar to that of an experimental
study. Again, there is no particular motivation to use odds in lieu of probabilities in a
prospective study. One of the advantages of a prospective study over an experimental
study is that you don’t need to manipulate, poke, prod, etc. your subjects; you are simply
observing what would normally happen anyway. When engaging in research on human
subjects, this is a big deal.

One of the problems with prospective studies is that, for rare outcomes, they need to
be quite large in order to generate statistically significant results. Look again at the
contingency table and the results of the Fisher test in the last example, now interpreting
it as data from a prospective study. Our hypothetical study involved 500 patients, yet
produced a very wide confidence interval: the 95% CI of the odds ratio is between 0.67
and 50. An informative exercise is to see how large our study would have to be to produce
a statistically significant result.

We can somewhat crudely and artificially vary the size of the study by multiplying all
elements of the contingency table by a constant factor and re-running the Fisher test.

If you try this, you can show that a study that can demonstrate that there is any significance
at all between the two groups would require about 1,500 subjects, and to narrow the CI to
something reasonable, we would need 16,000 subjects.
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A corollary of the above example is that the values you use when computing Fisher’s
exact test (or any test that uses counts, for that matter, such as the binomial test), must
be the absolute number of counts that were observed. You cannot use counts/min or
incidents per 100,000 in a population, etc. Some laboratory equipment, such as scintillation
counters, often report observations/minute; be sure to determine the absolute numbers of
scintillations detected if you use such count data in statistical tests that depend on absolute
counts.

The bottom line here is that prospective studies that investigate rare outcomes usually
need to be large, and can be expensive, and time consuming. Consider that not only do
we have to track a large number of patients, but we have do it for quite a while since we
have to wait for the disease to manifest itself in the population.

The alternative is to do a retrospective study. In this case, we form two groups based
on the outcome, and then look back in time to see if a hypothesized risk factor can be
implicated. A contingency table might look like the following:

Outcome X Outcome Y Total
Group I: 40 (A) 25 (B) 65
Group II: 10 (C) 25 (D) 35

Total: 50 50 100

In this design, we select the column totals, whereas in the prospective case we selected the
row totals. While in our examples, the totals are the same, this does not have to be the
case.

It is important to recognize that a contingency table from a retrospective study gives us
no information about the prevalence or rarity of the outcomes. From these data alone,
we don’t know if outcome X or Y is rare or common. However, as we shall show in a
moment, the odds ratio (but not the relative probability) of the groups computed from a
contingency table is correct. Before we demonstrate this, however, we will introduce one
more experimental design. . .

A cross-sectional study is a design where subjects are chosen without regard to either risk
factor or outcome. You simply randomly select from the population, and tabulate the
results in a contingency table. The analysis of a cross-sectional study is the same as a
prospective study. The ultimate cross-sectional study is to sample the entire population
(often this is only possible as a thought experiment).

Now, we can show how odds ratios can be computed from retrospective study data. Begin
by considering a complete cross-sectional study of the whole population:
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Outcome X Outcome Y Total
Group I: (A) (B) (A+B)
Group II: (C) (D) (C +D)

Total: (A+ C) (B +D) (A+B + C +D)

If you prefer to think in more concrete examples, consider the hypothetical case of an
outbreak of a disease in a small town. The population is 10,000, and half of the population
works in the local sausage plant. There have been 100 cases of the disease reported in the
town; 80 of the affected people are workers in the plant.

The relative probability and the odds ratio are computed as follows:

(
Relative

Probability

)
=

(
A

A+B

)
(

C
C+D

) (4)

(
Odds
Ratio

)
=

(
A
B

)(
C
D

) (5)

Now, in a prospective study, we sample some fraction of the population, fI , in Group I,
and some other fraction, fII , of the population in Group II. The data in our contingency
table are:

Outcome X Outcome Y Total
Group I: fI ·A fI ·B fI · (A+B)
Group II: fII · C fII ·D fII · (C +D)

Total: fI ·A+ fII · C fI ·B + fII ·D fI · (A+B) + fII · (C +D)

The table has six variables, and we don’t know any of them! But we do know four of the
products.

We can compute the relative probability and the odds ratio:

(
Relative

Probability

)
=

(
fIA

fIA+fIB

)
(

fIIC
fIIC+fIID

) =

(
A

A+B

)
(

C
C+D

) (6)

(
Odds
Ratio

)
=

(
fIA
fIB

)
(

fIIC
fIID

) =

(
A
B

)(
C
D

) (7)

So far, so good. . .
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Now consider a retrospective study. This time, instead of sampling the groups by row, we
are sampling the groups by column. We are sampling some fraction, fX , of those subjects
with outcome X, and another fraction, fY , of those with outcome Y. Typically (but not
necessarily), for rare diseases, fX is quite large (we look at a sizable fraction of reported
cases), while fY is very, very small (we consider a tiny sliver of the whole population to be
used as a control group). The data we have are

Outcome X Outcome Y Total
Group I: fX ·A fY ·B fX ·A+ fY ·B
Group II: fX · C fY ·D fX · C + fY ·D

Total: fX · (A+ C) fY · (B +D) fX · (A+ C) + fY · (B +D)

Incidentally, retrospective studies are often also called case-control studies. The cases are
those with a disease, and the controls are those without it.

Again, we have six variables, of which we know none. But we do know four products.
When we blindly compute a relative probability. . .

 Incorrect
Relative

Probability

 =

(
fXA

fXA+fY B

)
(

fXC
fXC+fY D

) ̸=

(
A

A+B

)
(

C
C+D

) (8)

. . . we see the result is incorrect. However, the odds ratio ‘magically’ works:

(
Odds
Ratio

)
=

(
fXA
fY B

)
(
fXC
fY D

) =

(
A
B

)(
C
D

) (9)

Note that in the middle expression above, the numerator is not the correct odds of outcome
X to outcome Y. However, due to the cancellation of the fractions, the computed ratio is
still correct. It is because we are unable to cancel the fractions when computing the relative
probability that we don’t obtain the correct result there.

Now we are in a position to understand why statisticians like to use odds ratios. It is a
consistent quantity that works for all of the experimental designs considered: experimental,
prospective, retrospective, and cross-sectional. That said, it is possible to compute CIs for
relative probabilities in experimental and prospective and cross-sectional studies. While
Prism can do this, some argue that methods based on odd-ratios are preferred because
they allow comparison of results across the variety of experiment types.

Recall that for rare diseases, the odds are approximately the same as the probability. So,
for rare diseases, as a bonus, you can use the odds ratio from a retrospective study as a
good approximation for a relative probability (aka relative risk).
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Now let us look at our retrospective study’s contingency table again, and run our Fisher
test. With only one hundred subjects, we have a statistically significant result. We also
see that the odds ratio is close to the relative risk (BTW: in this example, the disease is
not all that rare in our hypothetical population; diseases are often measured in incidents
per 100,000 or million). Finally, note that the CI is about as wide as a prospective study
with 4,000 subjects.

One of the principle advantages of a retrospective study is that they can be performed
relatively quickly, since you don’t need to select subjects and then wait for nature to run
its course. For diseases with a long incubation period, this is a critical concern. They can
often be performed by inspection of medical records (although there are assumptions that
come into play).

As you might imagine, you can also design and perform matched pairs case-control stud-
ies. In these studies, the controls are selected to be similar to the cases in variables that
are unrelated to the groupings. In our sausage plant example, for each patient that has
the disease (cases), we would select a control from our population that has a similar age,
weight, household income, kind of pet, etc. Except to state that these studies have addi-
tional statistical power over grouped case-control studies, we won’t go into the details of
experimental design or analysis of results here (you don’t use contingency tables to analyze
the results, as it masks the extra information inherent in the matched pairs).

Again, always remain aware that relative risk alone tells you nothing of the prevalence of
outcomes. If someone tells you that you are sixteen times more likely to contract vCJD
from eating beef if you vacation in the UK instead of France (vCJD outbreaks in the UK
were a big deal in the ’90s), you might consider altering your travel plans. Now consider
that the odds of contracting vCJD were estimated at 5 in 10,000,000 for dining in the UK
for a month, vs. 3 in 100,000,000 for dining in France for a month. Finally, consider that
the odds of dying in a motor vehicle accident are roughly 1.4 deaths per 100,000,000 miles
travelled. This implies that your round trip taxi ride to Newark Airport from campus is a
bit more risky than your exposure to vCJD would have been in the UK. This is not to say
that we shouldn’t protect our food supply (left unchecked, the odds may have gotten a lot
worse) or avoid risky behaviors, but it is important to keep things in perspective.
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5 Homework

1. You wish to compare the relative expression of Sox2 in cfos +/+ vs. cfos -/- cerebral
cortex cells.

For five fields of view from a cfos +/+ tissue sample, the total number of cells
(as determined by DAPI staining) and the number of Sox2 expressing cells were
counted:

total cells 143 122 156 135 117

Sox2+ cells 47 52 47 57 54

(a) Quantify the level of Sox2 expression in this sample.

For five fields of view from a cfos -/- tissue sample, the total number of cells
and the number of Sox2 expressing cells is:

total cells 118 123 148 137 156

Sox2+ cells 78 85 74 79 78

(b) Quantify the level of Sox2 expression in this sample.

(c) Compare the level of Sox2 expression in these two samples. Is there a statistically
significant difference?

(d) What can you conclude about the relative expression of Sox2 in cfos +/+ vs.
cfos -/- cerebral cortex cells from these data?

2. In preparation for the next session’s discussion of multiple hypothesis testing, please
read:

• https://arstechnica.com/science/2017/04/the-peer-reviewed-saga-of-

mindless-eating-mindless-research-is-bad-too/

• https://web.archive.org/web/20170312041524/http://www.brianwansink.

com/phd-advice/the-grad-student-who-never-said-no

Start by reading the original post; then read the two addenda at the top of the
page, and (at least some of) the comments.
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