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1 Introduction

In previous sections, we’ve seen over and over again that confidence intervals computed by
statistical tests will be narrower in experiments that include more samples. In this section,
we will use our knowledge of how CIs (and, equivalently, p-values) vary with n to plan
experiments of an appropriate size.

Before we begin, it is important to recall that it is not valid to incrementally add samples to
a study until you obtain a significant result. In other words, if you perform an experiment
with a sample size of six and obtain a p-value of 0.07, you can’t go back to the bench and
add two more samples so you can rerun your statistics with n = 8. Since this probably isn’t
an argument you want to get into with your HOL, it is a good idea to carefully consider
experimental design and sample size up front.

In this session, we’ll define the precision of a CI as its half-width. In the case of a symmetric
CI, the CI is written as

CI : x± precision (1)

Other texts may define precision differently, so if you look at other sources or use a computer
program to run these calculations, make sure you know how this term is defined and adjust
your interpretation accordingly. Some of the literature reasons in terms of “effect size”.
This is usually denoted with the symbol d, and is defined by the relation. . .

d =
precision

SD
(2)

You can think of the effect size as a normalized precision. The SD and the precision
have the same units of measure as the quantity being measured, so d is a dimensionless
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quantity.

Statistical power calculations only give you estimates of the sample size that will allow
you (with some likelihood) to conclusively observe a desired effect size, or one that is
larger. Furthermore, when you use these methods, you’ll need to estimate quantities like
the standard deviation (SD) of the quantities that you’ll measure. The bottom line is
that most of what is presented in this section is approximate, so (1) we’ll feel free to use
approximations in our formulae, and (2) it is a good idea to be conservative when we
provide our estimates.

2 Single Mean

From our previous lectures, we already know enough to estimate sample sizes for some
special cases. Recall that the 95% CI for a univariate distribution with large n is given
by. . .

95% CI: x± 1.96 · SEM (3)

95% CI: x± 1.96 · SD√
n

(4)

If we rearrange and take 1.96 ∼= 2, then we can write. . .

n ∼= 4 ·
(

SD

precision

)2

(5)

This is a useful rule of thumb to have at your disposal for estimating how many measure-
ments need to be taken to estimate the true mean to a desired precision.

Note that in order to use this formula, you’ll need to estimate the SD of a population
that you haven’t taken samples from yet. You can usually get a rough idea of what this
quantity will be by looking at previously obtained data. If you’re not sure, be conservative
and choose something on the high-side of what you expect.

The formula above only applies when n is sufficiently large to make the approximation that
t∗ ∼= 2. So if you get n = 4 from the above formula, you should appreciate that you are
likely to be underestimating n significantly.

This line of reasoning can be generalized by recalling that. . .

(1− α) CI: x± t∗ · SEM (6)

. . . which implies. . .

n ∼=
(
t∗ · SD

precision

)2

(7)
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Of course, t∗ is a function of n (and α), so this equation has to be solved iteratively.

These sorts of calculations can be performed by a computer. While Prism doesn’t perform
power calculations like this explicitly, we’ll show you in a moment how to use simulations
to get the results you want. But it is useful to know that other software packages (such as
R or StatMate) can do power calculations explicitly.

The above equations do not guarantee that if you perform n measurements, you’ll obtain a
CI with the desired half-width. In fact, if all of the assumptions in the analysis hold, you’ll
have a 50% chance of obtaining such a CI, or narrower. Put another way, your power to
obtain the desired precision will be 0.5. The power of an experiment is an important
quantity, and it is helpful to have an estimate of the power of an experiment before you
perform it. Formally, the power of an experiment is one minus the probability of a type II
error (assuming an effect of the specified size is actually present). Informally, power is the
chance that you’ll be able to measure an effect of a given size.

3 Difference Between Two Means

If you want to be able to determine the difference between the means of two groups of
measurements to a certain desirable precision, the rule of thumb is. . .

neach group ∼ 8 ·
(
SDeach group

precision

)2

(8)

There is an assumption that the SDs of the measurements from both groups are roughly
the same. As before, the sample size given by this formula will give you a 50% chance of
realizing your desired precision. You’ll need significantly more samples for a 95% chance
of hitting your target.

Example: In a series of knockdown experiments on MDCK cells, it was desired to confirm
that preparations of the knockdown prevent the formation of functional tight junctions
(TJ). This is assessed by measuring (among other things) transepithelial resistance (TER).
Inspection of previous studies shows that the mean value of TER for wild-type cells that are
known to form TJs is about 130Ω cm2, and the standard deviation of TER measurements
is about 30Ω cm2. In this experiment, we are only interested in whether tight junctions
form, not on the specific effects that a knockdown has on TER (perhaps via the regulation
of TJs). We might say that variations of up to 35% in TER would still be indicative of TJ
formation. The required precision for this experiment in therefore not particularly high:
we just want a CI with a precision of roughly ±45Ω cm2. According to our rule of thumb,
we’ll need. . .

neach group ∼ 8 ·
(
30Ω cm2

45Ω cm2

)2

= 3.5 (9)
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This tells us that we’ll need at least four samples per group. However, since the resultant
n is small, we suspect this may be a significant underestimation.

It is pretty straightforward to model a single instance of this experiment in Prism. We
begin by creating a Simulated Column Data analysis with two datasets, and four rows in
each dataset. The mean of the first dataset (named WT) is 130, and mean of the second
(named KO) is 130 · (1 − 0.35) = 84.5. Next, set up an unpaired t-test of this simulated
data.

We’ve just set up a simulation for an experiment where we know there is a effect, since
the means of the two columns of simulated data are not equal. However, we have very
few data points, so even though the simulated effect is rather large, there is a reasonable
chance that a t-test will not be able to conclude that the simulated data demonstrate a
statistially significant difference bewteen the WT and KO data.

In fact, based on our back-of-the envelope calculation, we expect there to be a roughly
50/50 chance that the result of any given simulation will be statistically significant. You
can convince youself of this by, in Prism, displaying the results from the unpaired t-test
analysis, and asking Prism to redo the simulation with newly generated random data. This
can be done by clicking the red icon that looks a die; each time you click, you’ll see a new
p-value computed from newly simulated data.

To more quantitatively assess the power of the simulated experimental design, we’d like to
rerun the simulation a large number of times and observe how many cases yield a significant
p-value. Fortunately, Prism can do this. With the result of the unpaired t-test displayed,
add a new Monte Carlo analysis (found in the Simulated Data section). In the subsequent
dialog, ask Prism to run 1,000 simulations, to tabulate p-values, and to classify a ‘hit’ as any
simulation where p < 0.05 (for our current purposes, there’s no need to tabulate results
from individual simulations). When you’re done, you will probably observe that Prism
reports that about 44% of the simulated experiments are hits, meaning that our design has
a power of a bit less than 0.5. If you go back to the specification of the simulation and
change the number of samples to 5 each of the WT and KO samples, and then rerun the
Monte Carlo simulation, you should see the power increase to about 56%.

Typically, we wouldn’t bother investing in a experiment that had a 50% or so chance of
finding an effect that we are interested in. We’d probably want a power of 80%, or even
95%. With a little bit of trial and error, you should be able to show that you’d need about
8 samples per group to have a power of 0.8, and around 13 samples per group to achieve
a power of 0.95.

In the above example, we were hoping to detect relatively large effect sizes. If our experi-
ment was looking not simply to determine if tight junctions were being formed, but rather
to quantify potentially subtle effects of preparation methodology on TER, then we might
say that we want to be able to resolve 10% changes in mean TER. Our precision would
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then be 13Ω cm2, and our effect size would be 13
30 = 0.43. Our rule of thumb then tells

us n = 8(3013)
2 = 42.6, so we estimate that we’d need 43 samples in each group to have a

50/50 chance of obtaining such a narrow CI.

This is confirmed by a simulation in Prism, and, with additional trial and error, we can
show that we’d need about 140 samples in each group to achieve a 95% power. That’s 280
samples in all, and assuming that you allow for some experimental problems, you likely
need to plan (and budget) for 300 or so preparations.

If you thought that the above computed samples sizes were surprisingly high, you are not
alone. Often when studies are planned (an all too rare event in the first place), the first
power calculations along these lines can be quite depressing. Although we can use power
calculations as above to compute a required n, budget, time and other constraints often
put an upper bound on n. What is usually needed in practice is a more holistic view of
the interplay and tradeoffs among power, effect size, and n that will aid in the selection of
a pragmatic experimental plan.

Preparation of plots can be very helpful in this regard. This plot shows the power of
experimental designs based on the canonical two-tailed unpaired t-test with equal SDs in
each group, and with α = 0.05.
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Plots like these typically are the most useful for planning experiments. All curves will
have the same basic sigmoidal shapes because there is always zero power as the sample
size approaches zero, and power can be made arbitrarily high by increasing sample size to
something very large.

If your power is very low, you may be better off not doing the experiment at all (this is
always an option). Similarly, if your experimental plan puts you on the upper flat part of
these curves, you might consider reducing your sample size a bit.

To review: In reality, the decision to include a certain number of samples in an experiment
is driven not by a single power calculation, but by understanding the tradeoffs among
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power, sample size, and precision. The precision you need (or want) is something that
should be guided by your scientific judgment and understanding of the underlying biology
of your system.

All of the results hinge on having a reasonable estimate of the variation of your data (this
appears as the SD in these analyses). Recall that in many biological studies, variation
can come from both measurement error and biological diversity. You can do something
about measurement error by being more careful at the bench, or by switching to more
precise methods, but realize that a good deal of intrinsic biological variation is typically
unavoidable.

4 Non-Equal Sample Sizes

As mentioned above, the decision to include a certain number of samples in an experiment
is usually driven in part by budget and time constraints. In some cases, the constraints
on sample size may be hard limits if you only have access to a fixed number of consenting
patients with a rare disease or a limited number of surgical tissue specimens. In many such
cases, the hard constraint is imposed on the number of samples in one group only. You can
still gain some statistical power by increasing the number of samples in the other group
(typically the control group), but there are limits to this.

You’ll always need the fewest total samples when sample sizes are equal, but you can use
unequal sample sizes if you need to. For example, we need roughly 64 samples in each group
to have an 80% chance of measuring an effect that is half the size of the SD of the data
we are collecting. However, if we have access to only 48 experimental samples, we can still
achieve 80% power by using 95 samples in the control group. The total number of samples,
48+95 = 143 in this case, is more than the 128 needed in a balanced design. This could also
be a useful trick to employ if creating experimental samples is substantially more expensive
or time-consuming than control samples, even if the number of experimental samples is not
strictly limited.

There are, however, limits to how far you can take this. To continue the example above, if
you only have access to 30 experimental samples, you simply cannot measure an effect of
size d = 0.5 with a power of 80%.

As above, plots can be prepared to gain insight into the tradeoffs that are at work under
these circumstances.

5 Homework

Prepare a Prism workbook that confirms the number of samples needed for each of the
cases in Section 4 above.
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-or-

Describe an experiment that you or a colleague recently performed (or, even better, are
about to perform) in the lab. What is the approximate SD of the measurements you make?
What is the size of the biological effect that you want to find? Perform the relevant power
analysis, and indicate where you are on the figure from section 3. In light of the result, are
you happy with the design, or would you alter it?
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