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1 Correlation

Linear correlation and linear regression are often confused, mostly because some bits of the
math are similar. However, they are fundamentally different techniques. We’ll begin this
section of the course with a brief assessment of linear correlation, and then spend a good
deal of time on linear and non-linear regression.

If you have a set of pairs of values (call them x and y for the purposes of this discussion),
you may ask if they are correlated. Let’s spend a moment clarifying what this actually
means. First, the values must come in pairs (e.g., from a paired study). It makes no sense
to ask about correlation between two univariate distributions.

Also, the two variables must both be observations or outcomes for the correlation question
to make sense. The underlying statistical model for correlation assumes that both x and y
are normally distributed; if you have systematically varied x and have corresponding values
for y, you cannot ask the correlation question (you can, however, perform a regression
analysis). Another way of thinking about this is that in a correlation model, there isn’t an
independent and a dependent variable; both are equal and treated symmetrically. If you
don’t feel comfortable swapping x and y, you probably shouldn’t be doing a correlation
analysis.

The standard method for ascertaining correlation is to compute the so-called Pearson
correlation coefficient. This method assumes a linear correlation between x and y. You
could have very well correlated data, but if the relationship is not linear the Pearson
method will underestimate the degree of correlation, often significantly. Therefore, it is
always a good idea to plot your data first. If you see a non-linear but monotonic relationship
between x and y you may want to use the Spearman correlation; this is a non-parametric
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method. Another option would be to transform your data so that the relationship becomes
linear.

In the Pearson method, the key quantity that is computed is the correlation coefficient,
usually written as r. The formula for r is:

r =
1

n

∑[
(xi − x)

SDx
· (yi − y)

SDy

]
(1)

The correlation coefficient ranges from -1 to 1. A value of zero means that there is no
correlation between x and y. A value of 1 means there is perfect correlation between
them: when x goes up, y goes up in a perfectly linear fashion. A value of -1 is a perfect
anti-correlation: when x goes up, y goes down in an exactly linear manner.

Note that x and y can be of different units of measure. In the formula, each value is
standardized by subtracting the average and dividing by the SD. This means that we are
looking at how far each value is from the mean in units of SDs. You can get a rough feeling
for why this equation works. Whenever both x and y are above or below their means, you
get a positive contribution to r; when one is above and one is below you get a negative
contribution. If the data are uncorrelated, these effects will tend to cancel each other out
and the overall r will tend toward zero.

A frequently reported quantity is r2. For a linear correlation, this quantity can be shown
to be the fraction of the variance of one variable that is explained by the other variable
(the relationship is symmetric). If you compute a Spearman correlation (which is based on
ranks), r2 does not have this interpretation. Note that for correlation, we do not compute
or plot a ‘best fit line’; that is regression!

Many people take their data, compute r2, and, if it is far from zero, report that a correlation
is found, and are happy. This is a somewhat näıve approach. Now that we have a framework
for statistical thinking, we should be asking ourselves if there is a way to ascertain the
statistical significance of our computed r or r2. In fact there is; we can formulate a null
hypothesis that there is no correlation in the underlying distributions (they are completely
independent), and then compute the probability of observing an r value as large or larger in
magnitude as the one we actually observed just by chance. This p-value will be a function of
the number of pairs of observations we have, as well as of the values themselves. Similarly,
we can compute a CI for r. If the p-value is less than your pre-established cutoff (or
equivalently, if your CI does not include zero), then you may conclude that there is a
statistically significant correlation between your two sets of observations.

To compute the correlation between two sets of (paired) measurements in Prism, begin by
entering the data into an “XY” data sheet. Then click analyze, and choose “Correlation”;
Prism will dutifully report the relevant r, r2, and p-value. When using the default options,
a 95% CI for r will be reported. If you’re interested in the 95% CI of r2, you can square
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each limit of the CI independently, but be careful to take due account of changes in sign.
For example, if the 95% CI of r is -0.3 − 0.5, then the 95% CI of r2 is 0− 0.25.

In many cases, you may see weak r2s reported in the literature, but no p-value or CI. If
you wish, you can compute a p-value yourself just by knowing n (the number of pairs) and
r; see a text if you need to do this.

A important point about linear correlation is that it is sensitive to outliers. Let’s explore
this with an example. We begin by considering 20 uncorrelated datapoints, which are
plotted here, and presented numerically in an appendix and available in the supplementary
file uncorr.txt for you to import into Prism.
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The correlation coefficient, r, for these data is 0.24, with a CI of -0.23 − 0.62. The fact
that the CI includes zero indicates that it is plausible that there really is no correlation
between x and y, which is consistent with the high (non-significant) p-value.

Now, let’s add one outlier, say the point x = 5, y = 5. The plot now looks like this. . .
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. . . and the correlation coefficent is now 0.7, with a CI of 0.39 − 0.87. We also have a
significant p-value. Recall that one of the assumptions of the correlation test is that both
x and y are normally distributed. Do you think that this applies in this case?
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2 Introduction to Modeling

Regression, or curve fitting, is a much richer framework than correlation. There are several
reasons why we may want to perform a regression analysis:

1. Artistic: We want to present our data with a smooth curve passing near the points.
We don’t have any quantitative concerns; we just want the figure to “look good”.

2. Predictive: We want to use the data we’ve collected to predict new values for an out-
come, given measured values for an explanatory variable. This may be, for example,
a standardization curve for an instrument or assay. We’d like our predictions to be
as consistent with our data as possible, and we don’t care too much about the math
that generates our predicted values (although simpler equations would be preferred
for practical purposes).

3. Modeling: We want to test a hypothesized mechanistic model of a system against
data, or we wish to use a mechanistic model we believe in to predict new data. In
this case, we do care about the mathematical structure of our model, as it is derived
from (or informs) our mechanistic model.

As basic scientists trying to figure out how the world works, we will focus on the third
technique.

In accordance with Occam’s Razor, all else being equal, we prefer simpler models to more
complex ones. In mathematical terms, we prefer:

• Fewer explanatory variables

• Fewer parameters (model coefficients, etc.)

• Linear over non-linear relationships

• Monotonic vs. non-monotonic relationships

• Fewer interactions among explanatory variables

Of course, there is always a natural tension, because more complex models tend to fit
our data better. There is always a tradeoff between model complexity and accuracy, and
scientific judgment is often necessary to resolve this inherent conflict. As we shall see, there
are some objective techniques that can help.

3 Simple Linear Regression

We’ll start with the mechanics of a simple linear regression; you have probably done this
before. Say we have our pairs of values, shown in the plot below, and we wish to fit a
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line to them. These data are shown in the appendix, and found in the supplementary file
named linear.txt.
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In this case, simple inspection makes it clear that a linear model would be appropriate.
It is also worth noting the structure of the data: there are three datapoints for each time
value.

To perform a linear regression on this data in Prism, begin again by importing the data
into an XY datasheet. Then click Analyze, and choose linear regression, and Prism will
derive a linear model that best fits the data, and the resultant line will be added to your
plot of the datapoints.

We see that the best-fit line has a slope of 1.909 and an intercept of 3.147. Prism also
reports the 95% CI of the slope and intercept of this regression line.

Furthermore, we get an r2 of 0.978, which is the same value you would get if you performed
a correlation analysis on the same dataset. This is one of the reasons why correlation and
regression are often confused. For regression, though, life is not as simple as just looking
at r2.

When you perform a basic regression (linear or otherwise), the model parameters are chosen
to minimize the sum of the squares of the residuals. A residual is the difference between a
predicted and an observed value. This breaks the symmetry in the mathematics between
x and y. You will get different lines if you regress y = f(x) and x = g(y).

Note that in the example above, there were three datapoints for each x value. Prism gives
you the option to enter data like this with three y columns. While this is fine, if you do so,
when performing a linear regression, the default option in Prism will be to regress to the
mean y-value for each x-value. We recommend that you don’t do this! By taking averages
before regression, you’re throwing away important information about the variance of the
underlying data. While you might get tighter CIs on the estimated parameters, this is
likely to be an overestimation of the certainty of the parameter estimates. By keeping all
of your data in one column, you can’t make this choice.
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We have used the term linear a few times without formally defining what that means. We’ve
taken for granted here that a linear regression fits data to a model of the form y = mx+ b,
and for present purposes, this is what we’ll take “linear” to mean. However, you should
be aware that in other contexts, the word “linear” implies something slightly different; for
instance, linear algebra is the study of systems that follow the form y = A · x; this is a
matrix equation whose one-dimensional analog is y = ax; there is no intercept term. A
transformation that includes such an intercept is called an “affine” transformation. Con-
verting inches to centimeters is a linear transformation, whereas converting temperatures
from Fahrenheit to Kelvin is an affine transformation.

4 Plotting and Interpreting Residuals

If you worked through the previous examples above in Prism, you may have noticed that
Prism gives you the option of preparing a plot of residuals for each regression.

You should always choose this option and inspect the results, as the following will demon-
strate.

Here is another dataset that we can fit some sample models to:
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The data can be imported into Prism from the provided supplemental file, residuals.txt.
If you perform a linear regression on this data in Prism, you should obtain a best-fit line
with a slope of 1.270 and an intercept of -5.137. The 95% CI of both parameters of the
line are also quite narrow; the CI of the slope is 1.233 − 1.307. The CI of the intercept is
-7.283 − -2.990, which is small relative to the range of the y-values over the whole dataset.
Additionally, the r2 value looks very strong at 0.99.

While all of these metrics seem to indicate a good fit, there is a subtle but fundamental
problem with the model. It may not be apparent from the default plot that Prism makes
of the raw data and the best fit line, but with some manipulation of the scale and careful
examination, you can observe that the model tends to systematically underpredict the data
at extreme values of x, and systematically overpredict the data at intermediate values.
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Subtle patterns like this can often be made more readily apparent by plotting the residuals
(i.e., the differences between the observed and predicted values for each point) as a function
of the x value.
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In a good model, the residuals should be normally distributed, and show no systematic
patterns. Here was can clearly see that this is not the case; there is something else going
on that the model is not capturing. Thus, despite the good numeric metrics, we would
reject this simple linear model.

When Prism make plots of residuals, it plots them as a function of the independent variable,
x. A more common practice is to plot residuals as a function of the fitted value of y.
This is more generalizable, in that you can easily prepare such a plot, even when there
are multiple explanatory variables in your model; i.e., when you’re fitting to the model
z = f(x, y).

5 Non-Linear Regression

Continuing the example above, if we are perceptive (or lucky), we might try adding a
quadratic term to our model. In Prism, choose to analyze the same data, but select Non-
Linear Regression, and use a second order polynomial model. Because we want to be able
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to inspect the distribution of residuals, be sure to ask for such a plot (you’ll find the option
on the Diagnostics tab). Also, make sure that Prism computes the 95% CIs of the three
model parameters. Prism will then fit to the equation y = B0 +B1 · x+B2 · x2.
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If you inspect the plot of residuals from this model, you’ll observe that there’s no longer
an obvious systematic pattern to the residuals.
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If you’re following along in Prism, you might notice that in our revised model, the 95% CI
of the intercept term included zero. Since we prefer models with fewer parameters, and it
seems that the intercept parameter isn’t needed, we might try a third model that doesn’t
include this parameter: y = B1 · x + B2 · x2. In Prism, this can be achieved by fitting to
the three-parameter quadratic model, but then fixing B0 = 0 on the Constrain tab. In this
case, the two parameter quadratic model predicts a curve that is nearly identical to that
predicted by the three parameter model.
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A systematic comparison of our alternative models is probably in order at this point:

Model formula SSQ1

model 1 y = B0 +B1 · x 733.84

model 2 y = B0 +B1 · x+B2 · x2 321.20

model 3 y = B1 · x+B2 · x2 325.73

Here we can see that model 2 (the full, three-parameter model) has the smallest sum-of-
squares of residuals. This should not be surprising, since both model 1 and model 3 are
special cases of model 2. Since curve fitting boils down to adjusting the model parameters
to minimize this SSQ, it is not possible for model 2 to fit worse than model 1 or model
3.

Given all this, which model do you think best represents the data? We’ve eliminated
model 1 due to the systematic variable in residuals. But should we use model 2, which
fits the points slightly better than model 3, but at the expense of more model complexity
(three parameters instead of two)? We’ll look more deeply into this question in our next
session.

1Use non-linear regression to a straight line to get Prism to report SSQs for linear models.
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6 Appendix

6.1 Uncorrelated data.

x y

1 0.2321 -0.5180
2 0.4751 1.6298
3 -0.9633 -0.3096
4 0.0728 0.9463
5 0.2049 0.8940
6 0.5956 0.4886
7 -0.4451 -0.7217
8 1.2178 0.1547
9 -2.5927 -0.0001
10 0.3947 0.9978
11 0.3490 1.9515
12 1.0328 -0.5550
13 0.8589 -0.1373
14 -0.9446 -0.9768
15 1.1953 -0.3095
16 0.2907 -0.5595
17 0.0380 -0.1542
18 -0.7352 -0.0600
19 0.3560 1.2042
20 -0.9831 -0.3106
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6.2 Linear data.

x y

1 0.000 3.796
2 2.000 5.891
3 4.000 10.387
4 6.000 13.038
5 8.000 17.766
6 10.000 23.625
7 0.000 3.111
8 2.000 6.813
9 4.000 11.819
10 6.000 13.998
11 8.000 17.032
12 10.000 23.778
13 0.000 3.648
14 2.000 7.993
15 4.000 9.860
16 6.000 15.343
17 8.000 19.453
18 10.000 21.154
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6.3 Residual exercise data.

x y

1 0.000 3.153
2 2.000 -1.370
3 4.000 6.172
4 6.000 5.365
5 8.000 8.487
6 10.000 10.139
7 12.000 9.581
8 14.000 16.576
9 16.000 16.664
10 18.000 19.836
11 20.000 18.397
12 22.000 23.032
13 24.000 25.170
14 26.000 31.559
15 28.000 26.692
16 30.000 29.333
17 32.000 34.666
18 34.000 35.634
19 36.000 38.256
20 38.000 39.679
21 40.000 47.117
22 42.000 44.352
23 44.000 48.154
24 46.000 52.181
25 48.000 50.265
26 50.000 53.115

x y

27 52.000 59.932
28 54.000 55.913
29 56.000 61.830
30 58.000 62.631
31 60.000 69.416
32 62.000 66.804
33 64.000 77.011
34 66.000 77.934
35 68.000 74.770
36 70.000 82.906
37 72.000 85.084
38 74.000 90.652
39 76.000 87.382
40 78.000 93.477
41 80.000 96.301
42 82.000 104.508
43 84.000 107.176
44 86.000 105.433
45 88.000 108.449
46 90.000 114.646
47 92.000 115.438
48 94.000 113.674
49 96.000 120.315
50 98.000 127.915
51 100.000 123.651
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