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1 Fitting a Michaelis-Menten Model to Myoglobin Binding
Data

A classic mathematical model for enzyme kinetics is the Michaelis-Menten equation:

V =
Vmax[S]

Km + [S]
(1)

Given data of V versus [S] for a particular enzyme and substrate, we can determine the
Michaelis-Menten parameters Vmax and Km using a regression procedure.

While the Michaelis-Menten equation is formulated in terms of a reaction rate as a function
of enzyme concentration, its mathematical form is often used (sometimes empirically) to
describe any phenomenon that saturates.

Consider, for example, the following data for the association of myoglobin and oxygen.

PO2 (torr) 1.1 1.5 1.6 2.3 3.4 5.3 7.5 8.4 14.1

[O2] (mL/dL) 1.49 1.79 1.79 2.11 2.83 3.42 3.79 3.97 4.08

These data are available in the supplementary file myoglobin.txt, and are plotted here.
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We can fit these data to this equation by asking Prism to perform a non-linear regression,
and choosing “One site – Specific binding” from the “Binding - Saturation” section of
equations. Prism will fit to the equation:

Y =
Bmax ·X
Kd +X

(2)

If you choose “Michaelis-Menten” from the “Enzyme Kinetics - Substrate vs. Velocity”
section of equations, you’ll perform an equivalent fit; just the terminology is different.

The best fit value of Bmax is 5.117 (95% CI: 4.747-5.535), and that of Kd is 2.828 (95% CI:
2.296-3.476). A plot of the best fit model looks like it reasonably predicts the data, and
a plot of the residuals doesn’t exhibit any obvious patterns that would cause us to reject
this model out of hand.
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So far, everything looks good.

2 Fitting a Michaelis-Menten Model to Hemoglobin Binding
Data

We will now repeat this exercise for similar data taken for hemoglobin. The experimental
observations are:
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PO2 (torr) 2 10 18 20 31 42 50 60 80 98

[O2] (mL/dL) 0.4 2.0 5.6 6.2 11.0 15.0 16.8 18.2 19.0 18.8

These data, plotted below, are available in the supplementary file hemoglobin.txt.
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The plot of the raw data already suggests a sigmoidal shape that may not be consistent
with our model. However, this could just be noise in the model, so we proceed objectively
with a similar fit as before.
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Here we see that the model curve does not fit the data too well. While we could proceed
with our quality control plots, for current purposes we’ll stop here and reconsider the
model. It turns out that if you take into account that hemoglobin is a multimeric protein,
and assume that affinity for binding at different sites is not independent, you get a more
elaborate form of the Michaelis-Menten relationship, called the Hill model:

Y =
Bmax ·Xh

Kh
d +Xh

(3)

The exponent, h, is called the Hill exponent, and is an indication of the degree of cooper-
ativity the system exhibits. If h > 1, the system is said to exhibit positive cooperativity;
if h < 1, the system exhibits negative cooperativity.
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We also see that when h = 1, the model reduces to the Michaelis-Menten model. In other
words, the Michaelis-Menten model is a special case of the Hill model. This relationship
between the models is important, and has a specific term: the models are said to be
‘nested’.

If we ask Prism to fit the hemoglobin data to a Hill model (the saturation model named
“Specific binding with Hill slope” choice), we get a best fit curve (in red), and a residual
plot as shown below.
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When performing non-linear fits like this, you should be aware that Prism uses an iterative,
trial-and-error procedure to determine the model parameters that minimize the SSQ of
the residuals. If you explore the tabs on the setup, you’ll note that there is a default
of a maximum number of 1,000 iterations, and that you can adjust the strictness of the
convergence criteria (see the Diagnostics tab). Additionally, and more importantly, these
iterative numerical procedures require a starting guess of the parameters. If you visit the
initial values tab, you’ll see what Prism chose. If you run into convergence problems, you
may need to take manual control. Getting such optimization to converge is sometimes
more art than science, and occasionally it is not possible. Some tips to aid in convergence
are:

1. Plot the curve predicted by the model at the initial guess, and adjust the parameters
“by hand” to get a decent starting guess.

2. Try fitting the model with one or more of the parameters fixed. Then use the opti-
mized values for the remaining parameters as starting points for a full optimization.

Prism has built in rules for initial guesses of the standard equations, so you may not run
into these problems too often if you stick to the forms of equation that Prism has baked
in. If you introduce your own algebraic equation, you’ll need to address this starting point
issue as well.

Also note that the statistical models that are used to estimate confidence intervals are
designed to work with real data that contain some noise. If the data that you fit to were
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generated from a function and all of the residuals were zero, Prism won’t compute CIs.
This may seem counter-intuitive, as you would expect most optimizations to perform well
when the error is zero, but the CIs need variance in the data relative to the model, and
can’t proceed if there is none. This is not likely to happen in the real world, but be aware
that if you use generated data, you’ll need to add some degree of noise.

The best fit value of Bmax for the Hill model is 20.300 (95% CI: 19.145-21.788), that of Kd

is 27.529 (95% CI: 25.383-30.265), and that of h is 2.435 (95% CI: 2.046-2.879). We should
note here that the physiologically accepted value of the Hill constant for hemoglobin is
between 2.5 and 3.0.

3 A Return to Myoglobin

Given the success of our Hill model, and given that regular Michaelis-Menten kinetics are
a special case of the Hill model, one might wonder why we don’t just always use the Hill
model. After all, if the system does not demonstrate cooperativity, the regression will tell
us by reporting a Hill exponent of unity.

Let’s try this approach with our myoglobin data by asking Prism to fit the myoglobin data
to the Hill model.

Our initial guess is informed by our previous run:
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Here we see that the two parameter Michaelis-Menten model fits the data almost exactly
as well as the three-parameter Hill model. This can be quantified by looking at the sum
of the squares of the residuals.

SSQMM = 0.108

SSQHill = 0.094
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Inspecting the CIs for the parameters, and comparing them to the results from the Michaelis-
Menten mode, is informative as well:

parameter Michaelis-Menten Hill

Bmax 5.117 (95% CI: 4.747-5.535) 4.777 (95% CI: 4.197-6.157)
Kd 2.828 (95% CI: 2.296-3.476) 2.439 (95% CI: 1.886-4.543)
h - 1.140 (95% CI: 0.790-1.532)

The first thing that you should notice is that the CI for the Hill exponent is quite wide
for this model; we could have reasonably significant positive or negative cooperativity.
Comparing the CIs for the other parameters with those from the two-parameter model
shows that the uncertainty in the three-parameter model is significantly larger. This alone
is a reason for rejecting the three parameter model if we can; it will reduce the uncertainty in
the parameter CIs. However, a more compelling argument is that of maximum parsimony,
or Occam’s razor. Given a choice between two models, if we don’t have good evidence to
support the more complex model (such as the cooperative Hill model), we should prefer
the simpler one.

Another way of looking at the problem is to keep in mind here that we only have nine data
points for myoglobin. A two parameter model therefore has seven degrees of freedom, while
a three parameter model has six. This is not an insignificant change, and there is a real
possibility that the Hill model represents an over-fit of the limited available data.

While choosing between models is often a judgment call that should integrate all available
scientific information, there are tools that help us in the decision. We will consider two,
the F-test and an interesting, non-statistical approach called AIC.

4 The F-test for Model Comparison

Using the F-test to compare two models follows the classical framework for statistical
testing. You state a null hypothesis, assume it is true, and then compute a p-value that gives
the probability of observing your data (or something more extreme) under that assumption.
If the probability is low enough, you reject the null hypothesis.

We know that the more complex model will always fit better because we have more param-
eters. If we start with the more complex model and remove a parameter, we expect that
the SSQ will go up. In fact, we can quantify this expected change in SSQ: if the simpler
model is the correct one, then we expect that the relative change in the SSQ should be
about equal to the relative change in the degrees of freedom. In other words, we expect
this ratio to be more or less equal to one if the complex model is just fitting to noise a
little better:
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F =

(
SSQsimple−SSQcomplex

SSQcomplex

)
(
DFsimple−DFcomplex

DFcomplex

) (4)

However, if the complex model really does represent the system better, we expect F to be
much larger.

The p-value computed by the F-test answers the question: assuming that the simpler model
is the correct one, what is the probability that we see a change in SSQ at least large as
the one we observed when we simplify the complex model. If this p-value is low, then we
reject the null hypothesis and accept the more complex model.

From a purely statistical point of view, if the p-value is above our pre-determined cutoff,
we could not make any conclusion. However, since either model is considered a viable
candidate for explaining our data, we apply the principle of maximum parsimony, and
accept the less complex model.

Performing an F-test is Prism is straightforward. Begin by choosing a non-linear model to
fit to – you can start with either the more complex or the simpler model. Then, on the
compare tab, choose the option “For each data set, which of two equations (models) fits
best?” Make sure you choose the “Extra sum-of-squares F test” as the comparison method,
and then select the alternative model (equation).

If you compare the Michaelis-Menten and Hill models using the provided myoglobin data,
you should get an F-value of 0.906. The F-test yields a p-value of 0.378. This means that
the observed F-value is not surprising, and consistent with an incremental improvement in
SSQ due to better fitting of random variation; the principle of maximum parsimony then
dictates that we accept the simpler model (given this data).

On the other hand, if you compare these models using the hemoglobin data, you should
get an F-value of 104.778. The F-test yields a p-value of 1.83e-05. The interpretation is
that this is a very surprising improvement in SSQ if it is due to just a better fit to random
variation. Thus we conclude that the added complexity of the Hill model is worth it, and
adopt that model.

It is very, very important to know that the F-test is only applicable for nested models,
and only when you are fitting them to the exact same data. You can’t compare unrelated
models with it, and you can’t compare a transformed and non-transformed model with it
(the data are not the same).
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5 Using AIC to Compare Models

The derivation for Akaike’s Information Criteria (AIC) is well beyond the scope of this
course. It involves information theory, maximum likelihood theory, and entropy. We can
get a rough feel for what the method is doing by looking at the resultant formula.

AIC = n · ln
(
SSQ

n

)
+ 2 (P + 1) (5)

Here, n is the number of observations, and P is the number of model parameters in the
regression. We observe that the larger the SSQ, the higher the AIC will be. Also, the AIC
increases as we add parameters to the model. Therefore, we can conclude that lower AICs
are better. We can imagine that if we add a model parameter (increment P ), the SSQ will
go down. If the parameter was worth adding, the increase in the second term will be more
than offset by a decrease in the first term.

By itself, the AIC is meaningless. The astute observer will realize that the SSQ has units
of measure, and therefore there is an implicit standardization. We can therefore make the
numerical value of the AIC whatever we like by altering the units of SSQ (or the standard
value).

This ostensible shortcoming is overcome, however, when we look at the difference between
the AICs of two models:

∆AIC = n · ln
(
SSQB

SSQA

)
+ 2 (PB − PA) (6)

The problem of the units of SSQ goes away. In practice, however, we can compute our
AICs using consistent units, and select the model with the lower value.

A correction to AIC is necessary when n is not much greater than P . The corrected AIC
equation is:

AICC = AIC + 2
(P + 1) (P + 2)

n− P
(7)

We can use the AIC to compare any two models fitted to the same dataset. The models do
not need to be nested; this makes the use of AICs a very powerful technique for comparing
unrelated models.

You are much more likely to see F-tests in the literature. Because these tests are based on
the classical statistical framework, many people feel more comfortable with them. How-
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ever, comparison of AICs can be more powerful, especially when dealing with non-nested
models.

It turns out that the difference in AIC (or AICC) is related to the probability that one
model is correct relative to another. A difference of about 6 corresponds to a 95% chance
that the lower scoring model is correct. Therefore, if a more complex model has a lower
score than a simpler model, but the difference is less than 6, you may still want to stick with
the simpler model, because the evidence in favor of the complex one is not overwhelming.
Given two non-nested models (perhaps with the same number of parameters), you might
simply choose the one with the lower AIC score, but appreciate that the difference between
the models is not ‘significant’.

6 Confidence Intervals with the F-Test [Optional; not in
Prism]

An interesting application of the idea behind the F-test is that it can be used as an
alternative means of estimating the uncertainty in model parameters. The basic idea
is to use what we learned about F-tests to compare a model with zero parameters to our
best fit model.

Consider the Michaelis-Menten myoglobin model. The SSQ for this model is 0.108325. We
had n = 9 data points and P = 2 parameters, so we had DF = 7 degrees of freedom. Take
this as model A.

Now consider a hypothetical model with no floating parameters (because we’ve arbitrarily
chosen values for Bmax and Kd); we would have n = 9, P = 0, and DF = 9. Take this as
model B.

We could compare these models in the usual way – sort of. In Prism, compare the model to
itself, and set constraints on model B! This would tell us if the combination of parameters
for Bmax and Kd that we chose is plausible, given the data. We could (although not easily
in Prism) do this repeatedly for many different combinations of Bmax and Kd. If we record
which combinations are plausible and which are not, we can get a map of the plausible
combinations.

For the myoglobin data here, such a map for the two parameter Michaelis-Menten model
looks like this (we’ve overlaid the 95% CIs of the Bmax and Kd parameters as reported by
Prism):
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If you think about it, this plot makes sense. The combination of parameters Bmax/Kd is
the initial slope of the Michaelis-Menten curve. Based on the data we have (look back at the
original plot), we have a pretty good idea of what that should be. However, determining
the maximum (plateau) of the curve is quite difficult from our data (this is notoriously
difficult experimentally; you need to go to very high values of X). To get Kd, which is the
half-maximal concentration, we need a decent idea of Bmax. So while there is significant
uncertainty in both Kd and Bmax, we do expect that they have a relationship (i.e., they
are not independent).

7 Homework

Prism has a more complete model for binding data analysis that includes terms for back-
ground and non-specific binding (the “One site – total” model). Compare this model to
the “One site – Specific binding” model for the myoglobin data used here. Which model
do you think best represents the data? Explain the method you used and your reasoning
for doing so.
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